Lithium (Li), Boron (B), Nitrogen (N), Magnesium (Mg), and Calcium (Ca) are pivotal elements across various spheres such as the hydrosphere, biosphere, and lithosphere, significantly impacting (bio-) geochemical and physiological processes. These elements exhibit stable isotopes with substantial roles in geological, environmental, and biological studies. The traditional method for measuring isotope amount ratios has been through mass spectrometry, which, despite its accuracy, comes with high operational costs, the need for skilled operators, and time-consuming sample preparation processes.
Combining optical spectroscopy with chemometrics introduces an innovative, cost-effective approach by the hand of high-resolution continuum source atomic and molecular absorption spectrometry (HR-CS-AAS and HR-CS-MAS) for the analysis of isotope ratios in Li, B, N, Mg, and Ca [1-4]. By analyzing the atomic or molecular absorption spectrum of the in-situ generated cloud of atoms of diatomic molecules (e.g., Li, BH, NO, MgF, CaF) during the electronic transition from the fundamental state, this method allows for the rapid determination of isotope ratios directly from sample solutions without the need for complex sample preparation.
For each element, the respective atomic or molecule's absorption spectrum was deconvoluted into its isotopic components using partial least squares regression or machine learning algorithms. Robust calibration models were developed, calibrated with enriched isotope, and validated against certified reference materials. Spectral data underwent preprocessing to optimize the modeling to determine the optimal number of latent variables.
The findings showcase that this optical spectrometric method yields results that agree with those obtained via inductively coupled plasma mass spectrometry (ICP-MS), offering a promising, cost-effective, and rapid alternative for isotope analysis with precisions as low as ± 0.2‰. This approach is a significant advancement in analytical chemistry, providing a new way to study isotope variations in biological, environmental, and geological samples.
Literature:
[1] Abad, et al., Spectrochim. Acta, Part B, 136 (2017) 116-122, [2] Winckelmann, et al., Anal. Chem., 93 (2021) 10022-10030, [3] Winckelmann, et al., Anal Bioanal Chem, 414 (2022) 251-256, [4] Abad, et al., to be submitted, (2024).